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Abstract. In this paper we study a special kind of optimization problems with linear comple-
mentarity constraints. First, by a generalized complementarity function and perturbed tech-
nique, the discussed problem is transformed into a family of general nonlinear optimization
problems containing parameters. And then, using a special penalty function as a merit function,
we establish a sequential systems of linear equations (SSLE) algorithm. Three systems of
equations solved at each iteration have the same coefficients. Under some suitable conditions,
the algorithm is proved to possess not only global convergence, but also strong and superlinear
convergence. At the end of the paper, some preliminary numerical experiments are reported.
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1. Introduction

Optimization problems with complementarity constraints have wide appli-
cations in economy, engineering design, game theory and so on, so many
scholars are interested in studying on this kind of problems and make great
achievements (see [2, 4, 12, 13, 15]).

In this paper, we discuss a special kind of optimization problem in which
the constraints are defined by a linear complementarity problem (LCP)
described as follows:

min f{x,y)

s.t. Ax<b,
(LCP) (1.1)
w= Nx+ My +q,

0w L y=0,

where f:R"™ — R is continuously differentiable function, A4 € R'*",
NeR™" MeR™" be R, qge R".

Obviously, if one writes the complementarity condition wly as an inner
product w'y =0, then (LCP)(1.1) is equivalent to a standard smoothing
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nonlinear programming (SSNP). So, theoretically speaking, (LCP)(1.1) should
be studied and solved with existing theory and methods for SSNP. Unfortu-
nately, J.V. Outrata, M. Kocvara et al. pointed out in [16] that the weaker
Mangasarian—Fromotitz constraint qualification did not hold at any feasible
points of the equivalent SSNP. Therefore, it will be rather difficult to obtain
the solution of (LCP)(1.1) by means of solving the equivalent SSNP directly.

As we know, the sequential quadratic programming (SQP) type algo-
rithms and sequential system of linear equations (SSLE) type algorithms
are effective methods for optimization problems with nonlinear constraints,
many scholars have made a lot of research on them and made great
achievements [3, 5-8, 17]. Recently, Fukushima, Luo and Pang proposed
in [4] an SQP algorithm to (LCP)(1.1). The main idea of their algorithm is
as follows: first, by Fischer—Burmeister complementarity function,
(LCP)(1.1) is equivalently transformed into a general optimization problem
(GP). And then solve the GP by means of SQP method. The initial point
is demanded to satisfy the constraints Ax < b,w = Nx+ My + ¢, and at
each iteration, a quadratic programming subproblem need to be solved. So
the computational amount is slight large. In addition, their algorithm pos-
sesses only global convergence.

In this paper, first by perturbed technique and a generalized complemen-
tarity function, we equivalently transform (LCP)(1.1) into a family of gerer-
al optimization problems containing parameters. Then, motivated by the
ideas from [6], we propose an SSLE algorithm to (LCP)(1.1). The proposed
algorithm possesses a few important properties as follows: the initial point
is only demanded to satisfy the constraint w = Nx + My + ¢; the algorithm
uses a special penalty function as a merit function; the three systems of
equations solved at each iteration have the same coefficients, so the compu-
tational amount is less than that of SQP algorithms. Under suitable condi-
tions, the algorithm is proved to possess not only global convergence, but
also strong and superlinear convergence.

The paper contains 7 sections. In Section 2, some known results are
restated and the idea or formation of the algorithm is analysed. In Section
3, the algorithm is given and its feasibility is discussed. We prove respec-
tively the global, strong convergence and superlinear convergence in Sec-
tions 4 and 5. Finally, some numerical experiments are presented in
Section 6 and we conclude with some final remarks in Section 7.

2. Preliminaries
For convenience, we use the following notation throughout this paper:

Xo={z=xy,w):w=Nx+My+gq},
X={zeXy:Ax<bh, 0<y L w=0},
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A" = (a]T,...,a;), BT = (by,...,by),z = (x,y,w),s = (x,),

= (yv W)v tp= (thl')
dz = (dx,dy,dw), ds = (dx,dy), dt = (dy,dw), dt; = (dy;,dw;),

Ly={1,...,p}, Lo ={1,...,m}, o(x) =max{0; ajx — b;,j € L}
(2.1)

And denote directly (x, y,w) = (xT, T, wT)".
Throughout this paper, we suppose that the following assumption holds:
(Al) 1) M is a Py matrix, that is, all principal minors of M are nonnega-
tive;
(i) For any z € X, the vectors {a; :j € I(x)} are linearly indepen-
dent, where I(x) = {j € L, : ¢(x) = a;x — b;}.
Now we restate the definition of a stationary point of (LCP)(1.1) and a
known result as follows.

DEFINITION 2.1. A feasible point z* = (x*, y*, w*) € X is said to be a sta-
tionary point of (LCP)(1.1) if

dz = (ds,dw) = (dx,dy,dw) € T(z", X) = vf(x*,y*)Tds>0,
where 7(z*, X) means the tangent cone of X at point z*.

PROPOSITION 2.2 [15]. Suppose that z* € X satisfies the so-called nondegen-
eracy condition:

(W) # (0,0),i = 1,...,m. (2.2)

Then z* is a stationary point of (1.1) if and only if there exist multipliers
(A u,v%) € R X R x R™ such that

NT AT
(Vf(x*,y*)) + | W+ | MY |ut+ | O |2 =0,
0 Y* —1I 0
220, (Ax" — b)) = 0. (2.3)

Moreover, formula (2.3) is equivalent to the following conditions:
* * NT Y* * AT *
W)+ 4y e )7+ (5 ) =0

220, (Ax" — b)) =0, (2.4)
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where diagonal matrices W* =diag(w;,i=1,...,m), Y* =diag(y;,i=
l,...,m).

For a given parameter u>0, we consider a perturbed problem associated
with (LCP)(1.1) as follows:

min f(x, y)
s.t. Ax<b,
w=Nx+ My+q, (2.5)

y;i=0, w; =20, yw; ==, i=1,...,m.

A typical scheme for solving problem (2.5) may be described as follows: by
a generalized complementarity function ¢, the perturbed complementarity
conditions “y;>0,w>0, y;w; = 5" are transformed into nonlinear equalities
¢(yi,wi, ) =0, i=1,...,m, where the function ¢ :R? x [0, +oo] — R sat-
isfies the following basic conditions:

(i) ¢ is continuously differentiable in {(a, b, u):(a, b, 1) # (0,0,0)};

(i) ¢(a,b,u) =0<=a=0,b>0,ab = g

(iii) For any (a,b, n) € R2 x (0, +00), it follows

#ifa.b.n)dh(a.b.) > 0, where ¢ (ab, ) 2 “ALDA)
1 0p(a, b, )
d);y(a7 b7 :LL) :T

There are many constructions for ¢ satisfying the conditions above (see [1,
11, 10]), here we give some examples:

Pla,b,p) =a+b—\/(a—b) +4; (2.6)

dla,b,p) =a+b—/a>+b>+2u; (2.7)

Pla.b,p) = atb— /@ +0 +2ab+ (2~ M, i€ (-2,2). (2.8)

Without loss of generality, we choose the function ¢ defined by (2.8) as
our complementarity function in this paper.

In order to analyze the derivative of ¢, it is not difficult to verify that
@ +b>+ dab + (2 — 2)u > 0 for all (a,b,u) # (0,0,0) and 4 € (—2,2), so
we obtain

aqs(“vbuu) 1— 2[{4:/1[)
_ fa 23/ + b2+ habt (27
Vd)(a’b’“):(@) =11- Ve i) (2.9)
o 2@+ bt (2D
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Now we define a vector value function ®:R?" x [0, +00) — R as follows:

(1, wi, )
O(t, 1) = Dy, w, 1) = : : (2.10)
G (Vims Wi, 1)
Let zF= (3% )k wh) e R x R x R and (Y, wh, u) # (0,0,0), then we
have
V(1) = V() = (05 T, (2.11)
where
rk = r(y w Huk) - dlag('})(yf(7 Wf'cv :uk)a = 17 ce. ,WI),

_ (2.12)
rfv = F(W Y >:uk) = dlag(y(wf,yf.‘,uk),l = 17 s ,Wl),

2
Habp) =1 b e(-22. 1)
2\/@ + b2+ Jab+ (2 — J)u

Therefore, problem (2.5) is transformed equivalently into the following
standard nonlinear optimization problem:

min f{x, y)
£ Ax<b,
(L) T (2.14)
w=Nx+ My +q,
Dy, w, 1) = 0.

The following result indicates a relation between (LCP)(1.1) and
(NLP,)(2.14).

PROPOSITION 2.3. Suppose that the nondegeneracy condition (2.2) holds,
then z* = (x*,y*, w*), corresponding multipliers w* = (1", u*,v*), is a station-
ary point of (LCP)(1.1) if and only if (z*,w) is a KKT pair of (NLP,)(2.14)
for uw= 0 with multipliers o* = (2*,u*,0*), where

%k % % L . def
’b**_{wivi/y(ymw 0) z%wivi71f161( )e{ZEL yl_o}
i %,k %,k def
' yivi/y(wl.,y[,O)——sz vf, ifiely(z )C{ZEL :wi =0}

II’

(2.15)

Proof. Let z¥ = (x*, y*, w*) be a stationary point of (LCP)(1.1), by Propo-
sition 2.2, we know that (2.3) holds, so
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L. 0 NT A"
<Vf();’y)>+ [l A (VL PPN OO PR}
r —1 0
2F=0, (Ax* — ) r = 0. (2.16)

where T =diag(y(y;,w;,0),i=1,....,m), T =diag(y(wj,5;,0), i=
l,...,m),v* is defined by (2.15). In view of (2.11), (2.16) is reduced into
the following system:

f( ) 0 NT AT

VAX, y*

( 0 )* O, w,0) |7+ | M |wr+ | 0 |a =0,
@, (", w*,0) I 0

220, (Ax = b)'2F =0,

which shows that (z*, o* = (1", u*,7*)) is a KKT pair of (NLPy)(2.14).
Conversely, the proof above holds, so the proof is completed. O

For an approximate solution z¢ = (x*, )%, wk) of (NLP, )(2.14), in order
to produce an improving direction, we consider the following system of lin-
ear equations

v/(sh)

0
T d mx1
(gk l(])k><£) T Apx* — by, ) (2.17)
k NxK 4+ My* + g — wh
(D(tka Mk)
where By € RUF2Mx0+2m) Gy — (] u,v) € NP x R x ™, the index set J is

a subset of L; which is produced by some method and satisfies some condi-
tions, and

. A, 0 0
AJk = (ajvj € Jk)aka = (b]7] € Jk)a Uk = U(kauk) = N M -1
0o Iy T

Generally speaking, in order to make the SSLE algorithm possess fast
convergence, the matrix B; must be an approximation of the Hesse matrix
of Lagrange function of (NLP, )(2.14), so we consider the Lagrange func-
tion of (NLP, )(2.14):

L(z,@, 1) = f(x,) + 2 (Ax = b) + u" (Nx + My + ¢ — w) + 0" ®(p, w, ).
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It is obvious that

H(z,v,1) € V2L(z, &, p)
Vells) V2, /s) O
2
— | V3 M) V3, f(s) + diag (vl () ) diag (Ul_a g(g[;u)) ,
0xcn diag(u,6 g’}fé’a )> dlag( o (/f)}(blzl u))

(2.18)

moreover, for the stationary point pair (z*, ®*) of LCP(1.1) satisfying (2.3)
and the corresponding v* defined by (2.15), by further computations, we
obtain

V25 V2, /15") O
H(z,0",0)= | ViS5 V3, fis >+dlag( (ELD) O
O Omxcm diag (vj-‘ %)
(2.19)
V2 A7) V2, £(s%) O
HE5,0)= | VAAS) V3 A7) +diag (5, 255%) O
0,051 0y05m d1ag( :‘a ‘%gz O>>
(2.20)

where
st = (x50, 6= wp).

Based on the above relation (2.19) or (2.20), it is reasonable to choose By
as the following form in this paper:

_ Ck 0 (n+m)x (n+m) mxm
Bk—<0 Dk>,Ck€§R , D e R . (221)
Therefore, if zF = (x*, y¥, wk) satisfies wk = Nx* + My* + ¢, then (2.17) is
transformed equivalently into the following system of linear equations with
smaller scale:

saew (8 9)8)--(H) e
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where
= Cy + (NM)'Di(NM), (2.23)

AJ 0 k - AJ’Xk — va
G (rkN rk+rkM> h(Z muk) - < (I;(l‘k,,uk)A . (224)
It is not difficult to prove that the following lemma holds.

LEMMA 24. 0 < y(a,b,n), y(b,a,u) <2 for any p > 0.

LEMMA 2.5. Suppose that assumption A1(i) holds, 1, > 0, the index set Jy
ensures that Ay, is full of row rank and Hy is positive definite. Then for any
K e Xy, i.e. Wk = Nx* + Myk +q,
(1) The coefficient matrix of (SLE|)(2.22) is nonsingular, furthermore,
(SLE)(2.22) has a unique solution.
(i) The matrix Gy H;;'GY is symmetric positive definite.

Proof. (i) It follows from Lemma 2.4 that the diagonal matrices I" f Fﬁ,
are symmetric positive definite. On the other hand, in view of the fact that
M is a Py matrix, it is not difficult to deduce from Lemma 4.1 in [14] that
Fk T'* M is nonsingular. Therefore, since 4, is full of row rank, we know
that Gk is also full of row rank; And since Hj is positive definite, so the

T
coefficient matrix of (SLE)(2.22) (Hk G,
G

0
(SLE)(2.22) has a unique solution.
(i) Vx # 0, xTGkalGZx = (GIx)"H (G} x), con51dering that Gy is full
of row rank, and Hy is definite, we see (Glx) H'(GFx) > 0, so G H;'G]
is positive definite. O

is nonsingular, furthermore,

As we know, generally, the solution ds* of (SLE;)(2.22) cannot avoid the
Maratos effect and get superlinear convergence, so it needs a modification.
The modificative method in this paper is to solve two systems of equations
which have the same coefficient as (SLE;)(2.22)(The details are given in the
following algorithm).

3. Algorithm

In this paper, we use a special penalty function as follows as the merit
function:

0(z, 0, ) = flx,y) + 2op(x +a2|¢y,,w,, )l

= fs) + ap(x) +O<H<D(l, M)Hlv (3.1)
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where o > 0 is a penalty parameter. This penalty function doesn’t penalize
the linear equality constraints, and use the penalty term ¢(x) defined by

(2.1) for the inequality Ax<b instead of Y7 | max{0; ajx — b;}.

ALGORITHM A

Step 0 (Initialization). Choose a parameter ¢ > 0 sufficiently small, parame-
ters A€ (-2,2), o_1,0>0, ¢-;1>0,0<p,0<1, choose a sequence
{ue}ie, such that
> 0,y < s Jim gy =0, lim B =7 e (0,1),7 € (1,2). (32)
Choose an initial point z° = (x°,)°, w°) € X,, a symmetric matrix By with
the form of (2.21) such that H, given by (2.23) is positive definite, let
k:=0.
Step 1 (Pivoting). Compute an index set Ji (x*, & ):
(1) Leti=0,é; = é&r_1;
(ii) Compute Ji; = {j € L; : 0< p(xF) — (a;xk — b)) <ex i}
If det(A;AY)>e;, where Ay= (aj,j € Ji), then let Ji(x*, &) = Ji,,
& = €k, g0 to Step 2. Otherwise, let i :=i4 1, & ; = %8;(,,;], go back
to (it).
Step 2 Compute ®(y*, wh, u,). If ®(YF wk, ) # 0, or ®(*, Wk, 1) = 0 and
W, <&, then go to Step 3. Otherwise choose 1 € (1, ;) and let p, = 1,
compute ®(y*, wk, 1) again (From Lemma 3.1 below, we know ®(y¥, wk,
W) # 0 at this time).
Step 3 (Generate a search direction)
(i) Denote J; = Jk(xk, ¢x), solve the system of linear equations

(SLE;) (X, i )(i.e. (2.22)). p
Let its solution be dsf, nf;dif< 0JA>, where 26, = (2,.j € Ji),

k
vk = (v'(ii, i€ Ly). Yo
Let
dwl = Ndx§ + Mdyk, dzk = (dsh, dwf). (3.3)

If dsO =0, A0J>0 Vj € Jy, then zF is a KKT point of (NLP,, )(2. 14)
in view of u;, < &, we can conclude that zF is an acceptable approxi-
mate stationary point of (LCP)(1.1), stop. Otherwise go to (ii).

(i1) Solve the following system of linear equations:

s (0 G (E) = (8 ) (.4
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where
& { 0, otherwise, (3.5)

. . 2
let its solution be ds*, ©f d§f< Tk > Let
v

dwF = Ndx* + Mdyk, dzF = (dSk,dwk). (3.6)

(ii1) Solve the following system of linear equations:

st (G T)(5) = ol )

(3.7)
. . Tk~ def /lk
let its solution be ds*, 7° = A{(A . Let
v
dwk = Ndx* + MayF, dzF = (dsF, dw). (3.8)
If ||dzF — dz*|| > ||dzF||, then let dzF = dz*.
Step 4 (Update the penalty parameter). Denote /lgd;f(igif,jELl), ke
(/lf,j € L), where
ojed ok K jedi
gt S S ks gk ] A TS Tk 3.9
o {0,1¢Jk, 70, ¢ . 39)
Denote
& = max 128 14 okl e s 1228 = 2401 126 = o413, (3.10)

where ||p||, défz,r.:l \pi| for p = (p1,p2,...,pr) € R'. The updating rule for o
is as follows:

— Olk—1, if O‘k—l?ék"i_é; (3 11)
k max{&; + 0,1 + 20}, otherwise . '

Step 5 (Curve search). Compute the step size 7, which is the first number t©
of the sequence {1, 5, %, ...} satisfying

0(zF + zdz* + rz(dAzk — dZ5Y), o, 1) <O, o, ) + ot (25, d2F oy, ),
(3.12)

where
1 1
V(=" 42 s ) = V(") A" — ouep () — e |0, ), +5 (d)" Hdis.
(3.13)
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Step 6. Produce a new iteration point by z&*! = zF + rdzF+ 12(dZF — dzF),
and update Bj; by some given method to yield a new matrix By, with the
form of (2.21) such that the matrix Hy,; defined by (2.23) is symmetric
positive definite, let k :== k + 1 and go back Step 1.

In the remainder of this section, we will analyze the feasibility and some
properties of algorithm A by a few lemmas.

LEMMA 3.1. Suppose that assumption (A1) holds, then the following state-
ments are true:
(i) Pivoting in step 2 is terminated after a finite number of computations.

(i) If D(y}, wi, i) = 0, then O(VF, wi, ) # 0 for g, < py.

Proof. (1) The proof is similar to that of Lemma 1.1 in [6] and omitted.
(ii) Suppose by contradiction that ®(3*, wk, 1) = 0, ®(Y*, w*, 1) = 0, then
it follows immediately from the properties of ® that yu;, = yé‘wff, W = yﬁ-‘wﬁ‘,
i=1,2,..., therefore yw, = u), contradicting u; < p. This completes the
proof. L]

From (SLE;)(2.22) and (SLE;)(3.4), it is not difficult to prove that the
following conclusions hold true by straightforward calculation.

LEMMA 3.2. Suppose that assumption (Al) holds, then

dS](; = _Pk Vf(sk) - Fkh(zk7 Mk))
k= —FL 7 (") + (GeHy ' G (2, ), (3.14)
dsk = dslg + Finy, 7t = nl(‘;’ - (GknglG;;)_lnka

where

P, = Hy' — H{'GHGH'G)) "G H; ',  Fr = H'G} (G H;'G}) ™.
(3.15)

LEMMA 33. Suppose that assumption (A1) holds and Hj, is symmetric posi-
tive definite, then the following statements are true:

(i) (SLE;)(3.4) and (SLE3)(3.7) have a unique solution, respectively.

(i) For any k, y(z*,dz*, oy, ) < 0.

(iii) For any k, there exists a T > 0 satisfying the curve search (3.12), that
is, Step 5 in algorithm A will be terminated after a finite number of
computations, so algorithm A is well defined.

(iv) The sequence {z*} generated by algorithm A satisfies w* = Nx*4-
My* + ¢ for all k.
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Proof. (1) Since the coefficients of (SLE;)(3.4) and (SLE;3)(3.7) are the
same as the one of (SLE;)(2.22), part (i) follows immediately from Lemma
2.5.

(i1)) From (3.13) and (3.14), we obtain

W(zkadzk7akuuk)
: : 1
= VA) (A + Fenge) — oo (¥) — o | D, gy )| + 3 (ds§)" Hidsg
. . 1 ]
= /(") ds + (FL7/05)) Ty — oep () — e | (75, )| +5 (dsp)" Hdsg.
(3.16)
Again, from (SLE)(2.22), one gets

VAs*) dsg = —(dsg) " Hiedsg — (265,) " (45,,0)dsg — (v) ' (T NT + T M)dsg.

(3.17)
On the other hand, we can deduce from (3.14) and (2.24) that
_ 1 Ap Xk —b
Fl 7 fs5) = (GyH; ' G} ‘< Ji Jk) — k. 3.18
x VSs) = (GeH, Gy) (1, 1) 0 ( )

Substituting (3.17) and (3.18) into (3.16), and taking into account (3.14)
and (3.5), we have

1

w(zkadzkaakmuk) = 2

(dsh)" Hdsh + 3" (226 — 25) (ax* — by)

JE€Jk

m
+ Y205, — ) ) — awp(x) — | (2, )
i=1

: Lok

- Y U)t< —E(ds{))Tdes’g

JETA6 ;<0

_ (akqo<xk> S - ) (a b,»)
J€Jk

m

+ 3 (1205, — o[ —a)ld(df )l = > (o )"
i1

JeTi,k <0

So it follows immediately from (3.11) and (2.1) that

(2, A2 ) < — 5 (dsp) T Hidsg — > (25,)* < 0, k. (3.19)

J€Ti25,<0

| —
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(ii1) For the sake of convenience, denote

T = fls" + ds* 4+ 2 (ds* — dsb)) — A(5),

T, = q)(xk + 1dx* + 1:2(&)7‘ — dxk)) — (p(xk),

m

T3 = Z(’d)(tf( + Td[k + Tz(&;k - dtk)huk)’ - ‘d)([{'(?:uk)b’
i=1

so we know that from (3.1)

H(Zk +7dZ* + rz(dAzk — dzk), Olges i) — G(Zk, oy i) = T+ o Tr + o T3
(3.20)

Notice that /(x* + tdx* + ¢2(dx* — dx*)) C I(x*) for all sufficiently small 7, so
T> = max{0; a;(x* + tdx* + (o — dx")) — bj,j € I(x* 4 wdx*
+ 22 (dxF — dx))} — max{0; aix* — by, j € 1(x*)}
< max{0; a;(x* + dx* + 2(dx* — dx¥)) — by, j € 1(x")}
— max{0; ax* — b;, j € I(x*)}
= max{0; (¢;x* — b)) + ta,dx*,j € I(x")}
— max{0; ax* — by,j € I(x*)} + o(1).
(3.21)
Since
g(xF, rdxb) défmax{O; (ax* — b)) + ta;dx*,j € I(x*)}
is convex with respect to 1, so
0, 7dxb) = B, (1 = )0 + 1) < (1 = )3, 0) + 3, db)
<(1 = 1) max{0; " — by, j € I(x")}
+ tmax{0; ax* — b; + a,dx*,j € 1(x*)},
which together with (3.21) gives
Ty = —tmax{0; a;x* — b;,j € 1(x")}
+ tmax{0; ax* — b; + a;dx*,j € I(x*)} + o(z
= —1p(x) + tmax{0; a;x* — b; + a;dx*,j € I(x*)} + o(x).
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Notice that j€ I(x*) C Jy, it follows from (SLE;)(3.4) that apx* — b+
ajdx* = n; <0, therefore we obtain

T, = —1p(x") + o(7).
On the other hand, arising from Taylor expansion, one has
Ty = f(s" + tds® + 2 (ds* — ds¥)) — A(sF) = ¢ 7 A ds" + o(1),

m

Ts= (1¢(rf, ) + 77 o(rf, me)de + o(0)] — (1, e))
i=1

= > (ot 1) = (e )l = 1o (15, ) + o)

i=1

(=0le(F, )l + o(2).

Il

1

5

Therefore
Ty + oy Ty + o T3 <t (V") s — opop(xF) — e Z |25 1)) + o(x)
i-1

<t (25, d2 o, ) + 0(0), (3.22)

which together with (3.20) and (¥, dz*, o, 1) < 0 shows that there exists
a tr > 0 such that

0(zF + tpdz" + r,z((dzk — 25, o, 1) <O, o, ) + o (25, d2F o, ).

This indicates that algorithm A is well defined.
Lastly, the proof of part(iv) is easy by induction method, and omitted.
]

4. Global Convergence and Strong Convergence

In this section, we first analyze and verify the global convergence of algo-
rithm A, and then further discuss and prove the strong convergence of
algorithm A under some additional assumptions.

For the sake of convenience, let z* be an accumulation point of sequence
{zF}, then there exists a subsequence K C {1,2,3,...} such that

Il{in]%zk =z = X"y "), 5=, =0, JS=J (41)
(S

LEMMA 4.1. There exists a constant € > 0 such that ¢, =¢ for all k.

Proof. Suppose, by contradiction, that there exists an infinite subset X;
K . . . :
such that ¢ — 0. In view of the fact that {g;} is monotonically decreasing,
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we know that lim,_.. & = 0. Without loss of generality, let & = & ;,, fk =
Jki.—1, S0 we have

det (AJAA}) <2, 0< <p(xk) — (ajxk —bj) <2, JjE€ jk. (4.2)
k k

Note that L; = {1,2,...,p} is a finite set, so we can suppose, without loss
of generality, that there exists an infinite subset Ky C Ky such that
Jir = J, Yk € ;. Define

o(x*) =max{0;aix* — b;, je J}, A" ={a;:jeJ},
Passing to the limit k£ — oo(k € K) in (4.2), we have
det (4345) =0, @(x*) =ax" —bj, jeJ.

From the second formula above, we know J C I(x*), contradicting assump-
tion (A1). This completes the proof. O

In order to verify the global convergence of algorithm A, additional
assumptions as follows are necessary:
(A2) There exist constants ¢, >¢; > 0 such that

allslP <sTHes<e|ls|?, Vse R, Vk=0,1,2,....

(A3) The point sequence {z¥} produced by algorithm A is bounded, and
every accumulation point z* = (x*,y*,w*) of {zF} satisfies the following
conditions:
(1) The (lower level) nondegeneracy condition (2.2) holds;
(i1) The submatrix My is nondegenerate, i.c., all of its principal minors
are nonsingular, where the index set J* = {i:w; = 0}.

From the closeness of X; and zF € X, it is obvious that z* € X, i.e.
w* = Nx* + My* + q. In view of (A2), (A3)(i), (3.2) and (2.24), we have

. Ky def - ¢ K def *
lim Hj = H'\ Ty =T S,(05w',0), T =TS0, )",0),

K & def AJ 0
G X6 —<r;,N r;+r::,M>' (4.3)

If define an index set Jo = {i € Lx:(T})); =7(v;,w;,0) =0}, then from
(2.13) and 2 € (—2,2), we have Jy C J*.

PROPOSITION 4.2 Suppose that assumptions (Al)—(A3) hold, then
(i) The limit matrix T, + I\ M of the sequence {(Ff +TEM), ke K} of
matrices is nonsingular.
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(il) The lzmzt matrix G* of {Gi} is full of row rank, the matrix
(H* o is nonsingular.
G 0

Proof. (1) We know that the principal minors M, ;, of M, are nonsin-
gular from (A3)(ii), so result (i) is true from Proposition 3.2 in [4].

(i)) From assumption (Al) and result (i), we know that A4, and

F* +I';, M are full of row rank, Tso is G*. Similar to the proof of Lemma

H G*

2. h
5, we can prove that G 0

is nonsingular. O

LEMMA 4.3. Suppose that assumptions (A1)—(A3) hold, then
(1) There exists a constant ¢ >0 such that H(Fk + M) <,

H(H/ Gk) <e, forall k € K.

(i) The sequences {dzk,k € K}, {dzF,k € K}, {dF ke K}, {}5 ke K},
(2%, k € K}, {vk,k € K} and {1,k € K} are all bounded.
(iii) There exists a positive integer ko such that oy = o, = o,V k=>ky.

Proof. (1) Result (i) follows immediately from Proposition 4.2.
(i) By (SLE;)(2.22), we obtain

<d316> :_<Hk GE>1 ( Vf( ") ) (4.4)
) Ge 0 h(z, 1)

Since wf(s") E>vf(s*), h(z*, ) E>h(z*,0), so there exists a constant ¢ > 0
such that

i)l =
7Mk

which together with result (i) gives that {dsk,k € K} and {n}, k 6 K} are
bounded, furthermore, we obtain from (3.3) that {dz,k € K}, {J5,k € K}
and {V§,k € K} are also bounded.

Similarly, we can verify that {dz*,k € K}, (% keK}, {*,keK} are
bounded, furthermore, we obtain {dz k € K} is bounded from Step 3 in
algorithm A.

(iii) Suppose by contradiction that this conclusion is not true, then, in
view of the updating formula (3.11), there exists an infinite subset {k;}
such that

ak,'—l < ékl + 57 OCk,‘ = max{ék,’ + 57 ak,‘-l + 25} >O(k,'—l + 257VZ
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On the other hand, from the updating formula (3.11), we know that the
whole sequence {0y} is monotonically nondecreasing, so o, >0, since
ki —1>k(_y). Therefore, one has

O,y S 0—1 < ék,- + 0, O, 2= O, —1 + 20, Vi.

(-1
The second inequalities above show that lim; . o, = +00. But, from the

first equalities above and result (ii), we know that

lim oy, < sup{&, } + 0 < +oo,
i—00 i

this contradicts lim,_,, ax, = +00. So result (iii) is true. O

Based on Lemma 4.3, in the remainder of this paper we suppose, with-
out loss of generality, that o = « for all k.

LEMMA 44. For any &; > 6> > 0 and (a,b) € R2, the following inequality
holds:

V2 — 1)

|d)(a7b762)|<|¢(a7b751)|+ 2\/'5—2

(4.5)

Proof. Using the mean value theorem, we know that there exists o0 €
(92,01) such that

|p(a,b,82)] = |¢p(a, b,d1) + b, (a,b,)(52 — 1),
(2—2)(61 = 62)
2¢/a® + b2+ Jab+ (2 — 1)o
(2—12)(61 —62)

= ’(ﬁ((l,b,é])‘ +

| a, b 51
2\/ a+2y? R L (0 )5
Vi
< b, o)+ ——.
LEMMA 4.5. Suppose that sequences {vi} and {y,} of scalars satisfy
=0, Ve <00, Pt <k + vk =12, (4.6)

k=1

Then (i) The sequence {y,} is bounded from above, i.e. limy_.7y; < +0o0.
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(it) The entire sequence {y,} is convergent (including a finite limit or
an infinite limit).

Proof. We first have from (4.6)
k
Vgt SV, VSVt T V-1 F VS s S+ va,
i—1

which together with )7, vx < oo shows that result (i) holds true.
In order to prove result (ii), let

a= lim Yk = lim Yk 4 = lim Yk = lim Vs
k—o0 kekK k—o00 kekK

and then it is sufficient to verify @ < a. For convenience, we assume that
both @ and a are finite real numbers. Let ¢ > 0 be any given real number
and small enough, we know that, from (4.3) and ) ;7 7, < oo, there exist
positive integers N € K, N € K and N such that

<7y, —a<ekeKVk>N, (4.7)
—e<y,—a<egkeKVk>N, (4.8)

—1
Vipi < &Vk>Nt=12 ...
=0

1

On the other hand, for any given k € K and k > max{N, N, N}, since K is
an infinite subset of {1,2,...}, there exists at least an integer ¢ such that
k +t € K, moreover we have from (4.6)

t—1
Viert S Vier—1 T Vitr—1S - SV + E Viti,
i=0

which together with (4.7) and (4.8) gives
a—¢e<a+e+e,

So we can conclude that a<a since ¢ > 0 is sufficiently small. The proof is
completed. ]

LEMMA 4.6. Suppose that assumptions (A1)—(A3) hold, then the sequences
{0z 0, i)} and {0(Z5Y, o, 1)} are both convergent and have the same
limit.

Proof. In view of lim;_ ., . = 77 in (3.2), we have v/2,/[i; 1> 4/, fur-
'uk ¢
thermore, by Lemma 4.4, we have
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V 2 — }u,LLk
2/l

where § = —Vz\/%) Combining this inequality with (3.1), we have

k k ¢ 15
|¢(ti+lnuk+l>| < |¢(l§+lmuk)| + < |¢(ti+l>:uk)’ + 0oy %

0 oty ) SO o, ) + macéA,u/l(_%. (4.9)
In view of the step size search (3.12) and Lemma 3.3(ii), we obtain

02 oy ) <OZF, o, ) + orp (25, d2F o, ) < 025, o, ), (4.10)
and which together with (4.9) gives

0" o, pyey) < 0", 0, 1) + magu};%. (4.11)

¥
2

On the other hand, from limk_m% =17, we know that y ;7 /1,1;- 1S con-
vergent, so {0(zF, o, )} is convergént from Lemma 4.4 and the inequality
above. Again, by (4.9) and (4.10), we get

H(ZkJrla o, /’Lk+1) - mo‘gulifi < 0(2k+1 , &y :uk) < H(Zkv o, :uk)
Passing to the limit k — oo, we have that limg_o 025" o, py) =
limy o 0(z%, &, ). The proof is completed. ]
LEMMA 4.7. Suppose that assumptions (A1)~(A3) hold, then

l//(zk7 de’ o, :uk) = 07 keK.

Proof- Suppose, by contradiction, that there exists a constant ¢ > 0 such

that

"p(zkvdzkaaa .uk)‘>57 Vke IC’
which together with Lemma 3.3(ii) gives

Y(Zr,dF )< —¢6 Vkek. (4.12)

Next we will show that there exists t > 0, such that 7, >1,V k € K. From
(3.20) and (3.22), we have

H(Zk + szk + Tz(d;k - dzk)a O(wuk) - H(Zkv O(nuk> <T¢(Zk7dzkv O(nuk) + O(T)a

Which together with the boundedness of {dzF,k € K} and {dzf— dz*,
k € K} shows that there exists a constant 7 > 0 such that

B(Zk + szk + Tz(d/ék - dzk)a o, :uk) < B(Zka o, :uk) + G’Elp(Zk, de7 o, .uk)7
(4.13)
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for all k € K and V1 € [0, 7]. Therefore according to the method of compu-
tating the step size 74, there exists z > 0 such that 7,>1, Vk € K so by
(4.12), we can rewrite (4.13) as

O(ZkJrl? o, ,uk) < O(Zk, &, .uk) — ozc.

Passing to the limit k£ — oo (k € K) and using Lemma 4.6, we obtain
—o1¢>0, which contradicts “c >0, >0, ¢>07, so limgy(zF dz*,

o, :uk) =0. [
Now we are ready to state and prove the global convergence theorem
for algorithm A.

THEOREM 4.8. Suppose that the stated assumption (A1)—(A3) hold, then
each accumulation point of the sequence {z*} generated by algorithm A is a
stationary point of (LCP)(1.1).

Proof. Let z* be a given accumulation point of {z¥} and subsequence K
ensure (4.1) holds. By (3.19) and assumption (A2), we obtain

1 : Tk
w(zk’dzka OC,/J]() < - §C1||dS(/;||2 - Z (/L/(;J)4 < O>

Jjel kg <0
From Lemma 4.7, we have limy y(z*, dz¥, o, ;) = 0, so
ldssll =0, > ()" = 0, (k= 00) (4.14)
jeJ i ;<0

Notice that {/LO 2keK} and {vf;, keK} are bounde% from Lemma
4.3(i1), without loss of generality, we suppose that )»0 —>/1* vol—>v
Hence we can verlfy by (4.14) that /1* =0, Vj € J. If not, then there exists a
/1*<0 teJ, so/l ,<0,1€el, furthermore

> () /(/13,)4 — () >0,

jed ;<0

which is in contradiction with (4.14). So passing to kX 00 in
(SLE)(2.22), we obtain

* NTFT‘ ~ % A} 7* 0

(10,20, Ap' by =0, ®(",w",0) =0, (4.15)

In view of I(x*) C J, it follows from above (4.15) that ¢(x*) = 0, further-
more, Ax* — bh<0. Passing to the limit k — oo in Wk = Nx* + My* + ¢, we
get w* = Nx* + My* + ¢, so z* = (x*,y*,w*) € X. Now we define
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205y, ifiel(z)E{ie Ly wi =0}

Lipr ifie () {ie L, : yr =0} (4.16)

=1 jed =0, ¢
Hence we obtain from (4.15)
NTYy* AT
* * A=0
TI)+ (yrye e ) (g )7 =0
220, (Ax —b)' A =0,

where Y* = diag(y},i=1,2,...,m), W* =diag(w},i=1,2,...,m). So the
theorem holds from the equivalent condition (2.4) of a stationary point. []

Denote

L=0L()E{ieLy: yy =0}, I, =1()%{ieLy:w] =0},

w

LT+:{j€L12/17 >0}, I*ZI(X*), AL*{+ :(aj,]'ELTJr).

In order to prove the strong and superlinear convergence, the following
assumptions are necessary:

(A4) Function f'is twice continuously differentiable.

(A5) (i) There exists an accumulation point z* of {zF}, so from Theorem
4.8, there exist multipliers (1*,v*) such that the stationary point pair
(z*, A", v*) satisfying (2.3), suppose that second order sufficient conditions
as follows hold true:

(ds)" 2 flx*, y")ds > 0, Vds € Q,

where

Qdéf{o ?é ds e Jrtm -'NI‘*‘ dx + (Mlﬁ,lﬁ.)dylﬁ = O,ALT+dx = O,dylj‘ = O}

(4.17)

(i) (Upper level) Strict complementary conditions hold, i.e.
A > 0(V) € I(x7)).
By (2.20), (4.3), (2.11), (2.12) and Proposition 2.3, it is easy to prove the
following result holds.
LEMMA 49. Assumption (AS5)() is equivalent to the following statement:
dz"H(z*,5%,0)dz > 0, Vdz € Q, (4.18)

where QF €{dz £ 0:4;: dx =0,(N M)ds=dw, (T} T} )dr=0}.
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LEMMA 4.10. Suppose that assumptions (A1)—(AS) hold, then
(1) limg_ o dzf = limy_,, dzF = 0.
(i) limy o [|Z5F! — 25| = 0.

Proof. From (4.14) and assumption (AS5), we know for any infinite subse-
quence K C{1,2,3,...}, that there exists subsequence K' C K such that
limy, ¢ dso =0, so hrn;HOQ dso = 0. On the other hand, limy_ .. nk =0 fol-
lows from (3.5) and } >0, Vj€J, hence we have lims_., ds* =0 from
dsk = dso + By, in (3. 15) combining (3.3) and (3.6), we have

lim dzf = 11m (dso,dwo) =0, 11m dzF = 11m (ds*, dwk) = 0.

k—o0 k—o00

Furthermore, since
124! — 24| =[ledz® + T (d2* — d2¥)|| <welld¥|| + 7 [ld2* — d2F |
Silldz| + e lld2" || = (1 + ) [|d="|

Therefore limy .o, |25 — z5|| = 0. ]

THEOREM 4.11.  Suppose that assumptions (A1)~(AS) hold, z* is an accu-
mulation point of sequence {zF} produced by algorithm A, then
limy_. 25 = z*, i.e. algorithm A is strongly convergent.

Proof. From Theorem 4.8, Proposition 2.3 and the given assumptions,
we know that (z*,®*) (where o* = (A", u*,0" =0%)) is a KKT pair of
(NLP,) (2.14) for p=0. On the other hand, by using the given assump-
tions and Proposition 4.2, it is not difficult to see that the second order suf-
ficient conditions and the linear independence constraint qualification
(LICQ) hold for (NLP,) (2.14) with u =0 at (z*,®*). Thus we can con-
clude z* is an isolated KKT point of (NLP,) (2.14) for u = 0 (see Theorem
1.2.5 in [16]). Furthermore, we know from Theorem 4.8 that z* is an iso-
lated accumulation point of {zf}. Therefore, combining this conclusion
with Lemma 4.10(ii) and Theorem 1.1.5 in [9], we obtain lim;_,, z* = z*.

O

5. Superlinear Convergence

In this section, we will analyze and verify the superlinear convergence of
algorithm A. For this goal, we first give some lemmas.

LEMMA 5.1 [6]. Suppose that assumptions (A1)—(AS) hold, then
Jr = 1(x") =TI, for k large enough.
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Based on Lemma 5.1, for convenience, let I* = I(x*) throughout the
remainder of the paper.

LEMMA 52. Suppose that assumptions (A1)—(AS) hold, then
limy oo )fg = A", limy_ o vlg = 0%, and (A",v*) (where v* and 0* satisfy (2.15))
are the multipliers associated with stationary point z* of (LCP)(1.1) satisfy-
ing (2.3), and (2", u*,0*) = (A", Y*v*,0*) are KKT multipliers associated with
KKT point z* of (NLPy) (2.14).

Proof. From Lemma 5.1 and (SLE;)(2.22), we have

1k
Hidsy + V(") + Gf ( ’“E}g* ) =0,
0

which together with Proposition 4.2, Lemma 4.10 and Theorem 4.11 gives
o _
< 31(1 > = —(GxG]) ™' Gr(Hydst + VA(s")).
0
Passing to the limit £ — oo, and notice that limj_ ds’é =0, we get
}vk * T\ —1 def /1**
(%) — e emn (7).
Yo

On the other hand, from the strict complementarity condition, we have
A; =0 for j € Li\I", so if we set )fg}Ll\,(x*) = 0, then

}\,k ;u* . . k * . k ~%
2= 5, |,ie lim Ag = A", lim vy = 0"
Uy v k—o0 k—o00
furthermore, the remaining conclusions follow from Theorem 4.8 and The-
orem 4.11. ]

By Lemma 5.1, assumption A(ii), (3.5), Lemma 5.2 and Step 3(ii), we see
that the following result is true:

LEMMA 53. Suppose that assumptions (A1)—(AS) hold, then n, = 0 for all
sufficiently large k, moreover, dz&k = dz~.

LEMMA 54. Suppose that assumption (A1)—(AS) hold, then

Ild=* — dz¥|| = o(lld=|*).

Proof. By Lemma 5.3, we have ds* = dsg for k enough large, so from
(SLE)(2.22) and (SLE3)(3.7), we obtain
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He GI\(ds—ds§) _ 0
<Gk 0><ﬁk—n’5 B h(Z* +dzf, 1) ) (5.1)

Again, by (SLE;)(2.22), we have
Ap (XK 4 dxh) — by, = A X5 — by + Aydxf =0,
and using Taylor expansion and (SLE)(2.22), one knows
O + dik, ) = O(F, ) + VO, )dl + O([ldek )
= 0(ldig|*) = o(lldss|I*) = Olld=g])-
So (5.1) together with (2.24) gives

He G\ (ds" —ds) _ 0
Gr 0 )\ # -zt O(lldzgl1%) )

Thus

& —dsg\ _ (He G\ (0
7~k Gr 0 O(lld=51°)

follows from Lemma 2.5. Hence ||ds* — dsk|| = O(|dz||*), furthermore,
ldz* — dzf|| = Oo([ld=E]1%). O

In order to prove superlinear convergence of algorithm A, the following
assumption is necessary:

(A6)  [I(H(Z", 0", i) — Biydz"|| = o(|ld="])

THEOREM 5.5. Suppose that assumptions (A1)—(A6) hold, then 7. =1 for
all sufficiently large k.

Proof. From (3.12), it is sufficient to verify the following inequality
holds:

0(zF + dz*, a, ) — 0025, o, ) <o (2F, dz5, o, )
Using (3.1) and Taylor expansion, we have
0(F + dz*, o ) — 0(2F, o, )
= VAT 43 (@A + o(JHP) — () - 20, )
() + o0+ dr )
(5.2)

In view of Vf(s*)'ds* = Vf(sF)ds* + V/(s*)"(ds* — ds¥), it follows from
Lemma 5.4 that
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1 ~ ~
3 (dsF) V25 dsk =

since

o([lds*||*) = o[lds* +ds* — ds"[|*) <o([|ds"||*) + o(||ds" — ds*|1*) = ol d=51*),

(ds") "V A(s)ds" + o([ld=51%)

N =

so by above results and (3.13), (5.2) is rewritten as
0(z* —l—d;k,oc,,uk) —0(2", o, 1)
<y(2F,d2F o ) — %(dsﬁ)Tdesg + VAS) T (dsF — ds) —l—%(dsﬁ)TV2f(sk)dsl(§
omax{0;;(x* +dx*) = by.j € L} +ol| O+ ) + o]l d=f ).
(5.3)
For j & J, = I, a;x* — b;<0 follows from a;x* — b; < 0. Since
4| = fld=* + d2F — d=* )| < [ldF]| + |d* — d=*],

so from Lemma 4.10 and Lemma 5.4, we have limj_. ||d/2/‘|| = 0, more-

over, lim ||cf;k|| = 0, therefore
k—o0

aj(xk + (T)?k) - bj = ajxk - bj + aj&;k <0, ] Q Jk. (54)

For j € J, by (SLE»)(3.4), (SLE3)(3.7) and Lemma 5.3, we obtain
gAY — dx¥) = —(g;(x* + dx) — ),

Ve, )T (i — di) = —p(ef + dik, ). (5.5)
Hence

aj(x* +dx*) — b; = a;(x* +dx*) — b+ a;(dX* — dxF) =0, j € Jj. (5.6)
In view of (5.4) and (5.6), we have

max{0; a;(x* + dx*) — b;, j€ L} = 0. (5.7)

Using Taylor expansion, we have
Gt +dr* ) = P(rf +dr* ) + V(£ +de, )T (At — di¥)
+0(]|di* — de*|?)
= G(f +d85, ) + (V) + O(|de )T (deF — de*) + O di* — de||*)
= (rf +di*, ) + Vo (ih, )T (dF — di) + O(|[de¥ ) (di* — dr)
+0(]|di* — de*|?)
= O([[de||)(di* — de*) + O(|di* — dé*[*) = o(||dzf]|*). (5.8)
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On the other hand, for j € Ji,
a(x* + dXF) — by = ap — by + i + (e — dvF) = a(d — ),
which together with (5.6) gives
a;(dx* — dx*) = 0. (5.9)
Denote ¢;(t, 1) = ¢(t;, 1), then by Taylor expansion, we have
¢i(lk + (ﬁk7 .uk)
~ 1, =~ ~ ~
= Gl 1) + V(1 gy )d* + 3 (A7) "2 (1%, ) di + o([|dE*|1?)
= $ill", ) + V(1 )it + V(¢ ) (i — di)
1, ~ ] ~ ~
+3 (d) i, o) di + o(||dE|1?)
~ 1
= V(1 ) (A1 — dr*) + 3 (deg) V21", m)des + o([|dg ),
which together with (5.8) shows that
~ 1 2
Vi1, ) (A — di*) + 3 (deg) "V i1, ) dt = o(|ld=g]I*).- (5.10)
By (SLE)(2.22), (5.9), (5.10) and Lemma 5.4, we have
VAT (dsk — dsk)

= —(ds}) " Hy (ds* — Zﬂola, (dx* — dob)
J€Jk
—Zvo,w ) (d — ) 11
1 & )
52 (di§) Vi, ) def + o(]|d= ).

Substituting (5.7), (5.8) and (5.11) into (5.3), we get

B(Zk +d}k7a7:uk) - G(Zkﬂ(xnuk) < w(zk>d2k:(xnuk)

1 1, .1
3D (A05) TR (g 5 (A1) V)0 2 (Ash) Hadsh + o d=)
i=1

1 . : .1 :
= (A ) 5 ) 0l (deg) VR, ) dig +5 (dsg) VA ) dsg
i=1

1 <
—5(ds) "Hydsg +o(ld=f%).
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In view of dw* = Ndx* + Mdy*, (2.21), (2.23) and (2.18), we have

(ds) VAN )ds + > uf (def) VP (¢, w)dif — (dsf) T Hiedsy
i=1

= (dz)"(H(Z* v, ) — Bi)dzf,
combining with the assumption (A6), the following result holds true:
H(Zk + d}ka O‘a/“‘k) - Q(Zkv O‘nuk) < w(zk’dzka.uk)
1, . _
5 (dzg) " (H (", v ) — By)dzg +o(|ldzg )
= (2,42 ) +oldzg)1*) < owr (2,2 ).

This completes the proof O

Although the step size of the algorithm A identically equals 1 near the
solution, (NLP,, ) is a series of approaching problems containing parame-
ters, the convergent speed has something to do with the properties of {u; }
and the superlinear convergence can not be obtained directly by means of
the existing results. So in order to verify the superlinear convergence of
algorithm A, denote

AL N' 0 A; N' 0
R, = 0 M* ri ;o R(z, ) = 0 MT Ty, w, ) |
0 —Em Fw 0 _Em F(Wyya :uk)
(5.12)
_ k _ T -1 pT
Re = R(Z, 1), P = Eppom — Re(RTR,) 'R (5.13)

LEMMA 5.6. Suppose that assumptions (A1)-(A6) hold, then for all suffi-
ciently large k, the following statements are true:

(1) The matrixes R, and Ry, are full of column rank.

(i1) The matrix

P H(z*,0%,0) Ry
0, :< X (5.14)
RT 0

is nonsingular, furthermore, there exists a constant ¢ >0 such that

loi'lI<c

Proof. (i) By Proposition 4.2(ii), we know that I'; + M'T, is nonsingu-
lar, therefore, the following matrices
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( M' T +MTF;;,> ( MT r;)

_Em 0 ’ _EI’I’I l—‘:

are all full of column rank. By assumption (A1)(ii), A% is full of column
rank and so 1s R,.

Similarly, we can prove the matrix Ry is also full of column rank.
(ii) In view of J; = I(x*), so part (ii) follows from Lemma 2.2.2 in [9]. ]

THEOREM  57. Suppose that assumptions (A1)—(A6) hold, if
e = o(||dz"||), then the sequence {z*} produced by algorithm A superlinearly

converges to a stationary point z* of (LCP)(1.1), ie. |2 —z*|| =
o([l2% = z*|)).

Proof. Let
k *
A i
uF = Dp(N MYds" + T, v =] o |, u=| u |,
ok v
Aka — ka
- V1(s) .
hz,p) = | Nx+My—-—w+q |, glz,u)= 0 + R(z, )",
(I)(y7 w, M/c)

(5.15)
where u* and ¢* are defined by Lemma 5.2. From (SLE;)(3.4), one gets

(VA 0)" + Bidz* + Ri* =0,  RIdzF 4 h(zF, 1) = 0. (5.16)

Since (z*, 2%, u*,0*) is a KKT pair for u=0 of problem (2.14), and
Jr = I(x*), so g(z*,0) = 0,Therefore, by Taylor expansion and (2.18), we

have
gz ) = 2(2%,0) + O(wy) = O(wy), H(z", 0%, py) = H(z",07,0) + O(y),
(5.17)

g2, ) = g(2" ) + Ve, ) (2 = =) + o(|| 2 — =)
= Ve, 1) (2" = ) + o(|I2* = 2|) + O(wy)
= H(z", 0%, ) (2" = 2) + O(wy) + o(||Z" — "))
= H(z*,0%,0)(* — 2) + o(||2" — =])) + O(1y)-
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So by (5.16) and (5.15), we obtain
—BidzF — Rui* = H(z",5%,0)(ZF — 2*) — Rai* + o(||Z° — 2*||) + O(wy).

Since P;R; =0 follows from (5.13), so, multiplying the two sides of the
equation above by matrix Py , we get

PyH(z*,5%,0)(zF — 2*) = =P Brdz" + o(||2F — 2|)) + O (). (5.18)
From assumption (A6), we have
PeH(Z5,5%,0)(ZF + dzF — 2°) = PLH(2*, 6%, 0)(2F — 2 + dZF + dZF — dZF)
= PLH(Z",5%,0)(" — 2°) 4 PcH(Z",5%,0)dzX + P H(z*, 5%,0)(dZ* — d¥)
= Pi(H(z",5%,0) — By)dz" + o(|| 2" — z7||) + O(1y)
= o(|[dz"])) + o1 = 2*|I) + O(uu)-
(5.19)

In view of the definition of A(z, ), we know h(z*,0) =0, V.h(z*, 1) =
Ry, so one has by Taylor expansion,

Iz ) = h(2, ) + V() (2 = 24) + oI = =)
= h(z" ) + Ri(z" = 2) + (|| = =7])).

On the other hand, i(z*, 1) = h(z*,0) + O(p) = O(1), so
R{(Z" = 27) = h(z", ) + 012" = 27[1) + O(y).-
This along with Lemma 5.4 and (5.16) implies
R (ZF + dzF — ) = RidZF + RY(ZF —2%) + R,{(dAzk —dzh)
= R{dz* + h(", o) + o[l ")) + o(l1* = 2[1) + O sy

= o([[dz"]1) + o(|I" = 2[1) + O (ue)-
(5.20)

In view of the fact that z/*! = ZF + dAzk, so we have from (5.19) and (5.20)

PLH(z,5%,0) R\ [ K+ — 2 .
(PO Y (7757 ) =l 4o~ 1)+ 0w,

which together with Lemma 5.6(ii) and = o(||dz¥||) gives that
1241 = ZF{I<o(ll=* = 2[1) + o(lldz"])) = o(llz" — =*[|) + o(lldz"|1)

= o(ll" = 2 [) + oI = ) <ol = 2) + oI — 271)-
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Hence
15 =2 () ol = =) ol = =1I)
12 = 2| EEE A EEE
Passing to the limit £ — oo, we have
k+1 _
N R ()t =

e 5 =27

6. Numerical Results

In order to test the efficience of the proposed algorithm, we solve some
examples. The computing results show that the algorithm is efficient and
fast. The following three test problems are taken from [4].

PROBLEM 1

1 1
min f(x,y) = §x2 + TR 95x

s.t. 0<x <200,
1
w:§x+2y— 100,
0w L y>=0.

PROBLEM 2. Let
1
foxry) =3 [+ 221 = 15 + (a1 + x4 32— 15)7),

10 10

-1 0 0 2 8 8§ 2
A= , b= , M= , N=|] :

0 1 10 22 2 2

0 -1 0

PROBLEM 3. This is a set of several problems with data generated as fol-
lows. The objective function is given by
1
Sy =5xTx+ely, e=(1,.... 1),

and the matrix M is strictly diagonally dominant (thus P) with off-diagnoal
entires being random numbers between 0 and 1, the entires of the matrices
N, A and vectors ¢, b are randomly generated; moreover, ¢ and b are non-
negative vectors and the pair (A4, b) is such that the n-vector of all ones sat-
isfies Ax<b. This kind of problems have optimal solutions x* = 0, y* = 0.
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Table 1. Performance of algorithms A and FLP on the three test problems
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Problem Size Initial point Updating Formula Na  f(x*y*) NgLp
(p,m,n) (x°, ¥%) e for comput
ing By
6.1) 20 —3.2666666665¢ +003 23
Wer1=0.50,  (6.2) 18 —3.2666666660e +003 22
1 (2,1,1) (0,0) (6.3) 19 —3.2666666663¢ +003 23
6.1) 23 —3.2666666667¢ +003 Fails
tepr = 0.5p1° (6.2) 20 —3.2666666667¢ +003  Fails
6.3) 5 —3.2666666666e +003 8
6.1) Fails 48
Wer1=0.5  (6.2) 42 1.1501591998e-027 Fails
2 (4,2,2) (0,0) 6.3) Fails 28
(6.1) Fails Fails
tepr = 0.5pk° (6.2) 18 0.0000000000e +000  Fails
(6.3) Fails Fails
6.1) 36 404566452855e-010 50
Mie+1= 0.5 (6.2) 35 5.9148158177e-010 30
3 (30,30,50) (ones,zeros) 6.3) 37 1.7414574636¢-010 28
6.1) 7 2.5837711355¢016 11
tepr = 0.5p1° (6.2) 7 2.5716508351e015 11
6.3) 7 5.1736973325¢-016 12
6.1) 41 3.8260317239¢-011 50
6.2) 39 1.0485304714¢-010 31
3 (50,60,50) (ones,zeros) g+ 1=0.5u (6.3) 38 1.9690694013¢-010 30
6.1) 7 3.4554261581e-016 12
tepr = 0.5p1° (6.2) 7 1.1889320698e-015 11
(6.3) 7 5.8833421524e-016 11
6.1) 38 2.1989377005e-010 51
Wee1 =050, (6.2) 38 2.2583316969¢-010 32
3 (100,70,70)  (ones,zeros) (6.3) 40 8.9947090307¢-011 31
6.1) 7 2.8473364919¢-015 11
1 = 0.5045 (6.2) 7 5.8214664360e-016 12
6.3) 7 6.4785283839¢-015 11
6.1) 42 3.7324915964¢-011 50
We+1=0.51 6.2) 44 1.0236235664e-011 38
3 (150,100,100) (ones,zeros) (6.3) 40 9.1641172875e-011 38
6.1) 7 9.3123502743¢-016 11
o1 = 0.50)5 (6.2) 7 1.8769541428¢-015 11
6.3) 7 5.5426324526e-016 11

In the test processes, the termination rule and parameters are chosen as

follows:

ldz§ll.o <107* and 25, >0,

§=10"%,2=0,0,=10,e=1, f=0.5 6=10, ¢ =0.1,i7=0.5,
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and we choose the matrices By, i.e., Ck, and Dy in (2.21) by one of follow-
ing forms:

A N
Ck = Il1+my Dk = 0, (62)
C vin(Sk) v.%cyf (s)
pr— , ) |
AT V) + a1 L)
~ P15, )
k=1 i Mk
Dy = diag <Ui T) - 63)
with p~! = (_17 cee _I)T € R".

The numerical results are given in Table 1 below where we make a sim-
ple comparison with the algorithm which is proposed by Fukushima, Luo
and Pang in [4] (FLP). The word “‘fails” means that the associated algo-
rithms can not achieve the given precision 10~ or the number of iterations
is too large. Nao and Ngrp represent the total number of iteration of Algo-
rithm A, Algorithm FLP, respectively. From the computational results of
Table 1, the proposed Algorithm A with superlinear convergence is more
efficient and faster than FLP algorithm. Specifically, FLP algorithm fails in
many cases of choice of matrix By and perturbed parmeter p;, but our
Algorithm A is efficient still in these cases.

7. Concluding Remarks

In this paper, we have first transformed the discussed problem (LCP)(1.1)
into a family of general nonlinear optimization problems (2.14) containing
parameters, then have established an SSLE algorithm for it. We have tested
the proposed algorithm on some examples, and the results have shown that
the algorithm is numerically doable. Moreover, the three systems of equa-
tions solved at each iteration have the same coefficients and the computa-
tional amount of the proposed algorithm is less than that of existing SQP
type algorithm. So we feel that the proposed algorithm is an effective
method for (LCP)(1.1) and will be further studied to turn it into a practical
tool for solving large-scale engineering and economic applications of LCP.
Meanwhile, we point out that the proposed algorithm is rather sensitive
to the way the perturbed parameter g, is updated. As expected, the matrix
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By has a dramatic effect on the performance of the algorithm; In fact, in
some cases a careless choice of B; has caused the algorithm to fail.

Acknowledgement

This work was supported by the National Natural Science Foundation
(10261001) and the Guangxi Province Natural Science Foundation
(0236001, 0249003) of China.

Reference

1. Chen, B. and Harker, P.T. (1993), A non-interior-point continuation method for linear
complementarity problems. SIAM Journal on Matrix Analysis and Application 14, 1168—
1190.

2. Faccshinei, F., Jiang, H. and Qi, L. (1999), A smoothing method for mathematical pro-
grams with equilibrium constraints. Mathematical Programming 85, 107-134.

3. Facchinei, F. (1997), Robust recursive quadratic programming algorithm model with
global and superlinear convergence properties. Journal of Optimization Theory and
Application 92(3), 543-579.

4. Fukushima, M., Luo, Z.Q. and Pang, J. (1998), A globally convergent sequential qua-
dratic programming algorithm for mathematical programming with linear complemen-
tarity constraints. Computational Optimization and Applications 10, 5-34.

5. Gao, 2.Y., He, G.P. and Wu, F. (1997), Sequential Systems of Linear Equations Algo-
rithm for Nonlinear Optimization Problems with General Constraints. Journal of Opti-
mization Theory and Application 95(2), 371-397.

6. Gao, Z.Y., He, G.P. and Wu, F. (1997), A sequential systems of linear equations method
with arbitrary initial point. Science in China 27(1), 24-33.

7. Han, S.P. (1976), Superlinearly convergent variable metric algorithms for general non-
linear programming problems. Mathematical Programming 11, 263-282.

8. Jian, J.B. (2002), A Feasible Method for Superlinearly and Quadratically Convergent
Sequential Systems of Equations. Acta Mathematica Sinica 45(6), 1137-1146.

9. Jian, J.B. (2000), Researches on superlinearly and quadratically convergent algorithms for
nonlinearly constrained optimization, Ph.D.Thesis, Xi’an Jiaotong University, Xi’an,
China.

10. Jiang, H. and Ralph, D. (2000), Smooth SQP methods for mathematical programs with
nonlinear complementarity constraints. STAM Journal on Optimization 10(3), 779-808.

11. Kanzow, C. (1996), Some noninterior continuation methods for linear complementarity
problems. SIAM Journal on Matrix Analysis and Application 17, 851-868.

12. Kocvara, M. and Outrata, J.V. (1994), On optimization systems governed by implicit
complementarity problems. Numerical Functional Analysis and Optimization 15, 869-887.

13. Kocvara, M. and Outrata, J.V. (1995), A nonsmooth approach to optimization problems
with equilibrium constraints, In: Ierns, M.c. and Pang, J.D. (eds.), Proceedings of the
international conference on Complementarity Problems, pp. 148—-164. SIAM Publications,
Baltimore, Maryland.

14. Kojima, M., Megiddo, N., et al. (1991), A Unified Approach to Interior Point Algorithms
for Linear Complementarity problems, Springer-Verlag, Berlin, Heidelberg.

15. Luo, Z.Q., Pang, J.S. and Ralph, D.M. (1996), Mathematical Programs with Equilibrium
Constraints[M], Cambrige University Press, London.



510 JIAN-LING LI AND JIN-BAO JIAN

16. Outrata, J.V., Kocvara, M. and Zowe, J. (1998), Nonsmooth Approach to Optimization
Problems with Equilibrium Constraints[M], Kluwer Academic Publishers, Netherlands.

17. Panier, E.R., Tits, A.L. and Herskovits, J.N. (1988), A QP-free global convergent, locally
superlinearly convergent algorithm for inequality constrained optimization. SIAM Journal
on Control and Optimization 26(4), 788-811.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


